

Correction to "Organocatalytic Oxyamination of Azlactones: Kinetic Resolution of Oxaziridines and Asymmetric Synthesis of Oxazolin-4-ones"

Shunxi Dong, Xiaohua Liu,* Yin Zhu, Peng He, Lili Lin, and Xiaoming Feng*

J. Am. Chem. Soc. 2013, 135, 10026-10029. DOI: 10.1021/ja404379n

Supporting Information

Pages 10027–10028, the *S* factor was calculated according to the following equations:

$$S = \ln[(1 - C)(1 - ee)] / \ln[(1 - C)(1 + ee)]$$
(1)

$$C = ee/(ee + ee')$$
⁽²⁾

where ee' is the enantiomeric excess of the product, and ee is the enantiomeric excess of the recovered substrate.

The *S* factor is not accurate when *C* is determined from the enantioselectivity of the products (eq 2). If *C* is calculated upon the recovered yield of oxaziridine 1 (1 – yield of 1), the corresponding *S* factor ranges from 6 to 41 (Tables 2 and 3), which is lower than the data shown in the paper but provides a lowest possible limit. Under normal condition, the *S* factor is equal from the two equations. Indeed, the reaction generated both byproducts and diastereomers in this catalytic system, which rendered difficult an accurate estimation of $K_{\rm rel}(S)$. Because of the issues noted above, we withdraw the data and the description regarding the *S* factor in the whole of this paper, and maintain the results in terms of recovered substrate and product yields and ee value.

ASSOCIATED CONTENT

Supporting Information

Experimental details and analytic data (with *S* factor data removed). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

т .

ACKNOWLEDGMENTS

We thank Prof. Tehshik P. Yoon for drawing our attention to this point.

15964

Published: October 14, 2013